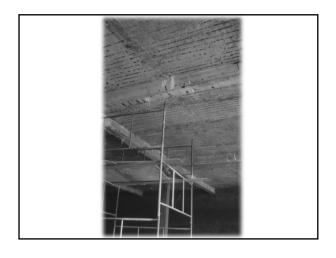


# **Conceitos**

As estruturas devem ser adequadas para sua correta utilização durante a vida útil de projeto VUP:


- √ Seguras
- √ Funcionais
- ✓ Resistir incêndio
- ✓ Duráveis
- ✓ Bonitas
- ✓ Sustentáveis

# **Conceitos**

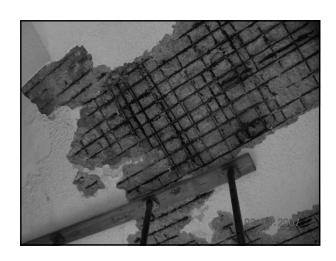
As estruturas devem ser adequadas para sua correta utilização durante a vida útil de projeto VUP:


- ✓ Seguras
- √ Funcionais
- ✓ Resistir incêndio
- √ Duráveis
- ✓ Bonitas
- ✓ Sustentáveis




































### ABNT NBR 6118

### **Estrutura**

- a) prever drenagem eficiente (o problema é a água);
- b) evitar formas arquitetônicas e estruturais inadequadas;
- c) garantir concreto de qualidade apropriada, particularmente nas regiões superficiais dos elementos estruturais;
- d) garantir cobrimentos de concreto apropriados para proteção às armaduras;
- e) controlar a fissuração das peças;
- f) prever revestimentos protetores (impermeabilização); e
- g) definir um plano de inspeção e manutenção preventiva.

# Estruturas de Concreto Conceitos

- ✓ Envelhecimento natural previsto; não incomodo
- ✓ Envelhecimento precoce não previsto; caro
- ✓ **Durabilidade em uso** manutenção
- ✓ **Projeto de manutenção** saber fazer e bem realizar

# Mecanismos de Deterioração e Envelhecimento

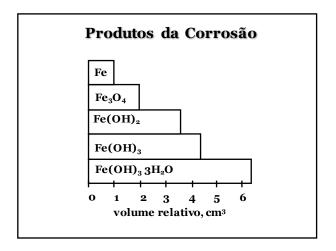
### Aço / Armadura

- ✓ corrosão por carbonatação
- ✓ corrosão por cloretos

### Concreto

- ✓ lixiviação → água, chuva ácida e ácidos
- ✓ expansão → sulfatos e AAR
- √ intemperismo → fungos, fuligem

### Estrutura


✓ Fissuras, deformações, ações mecânicas, movimentos térmicos, impactos, ações cíclicas, retração, fluência, relaxação, ...



### CORROSÃO DE ARMADURAS

- ➤ Condições para ocorrência no concreto
- > Oxigênio + "água" → "ferrugem"

$$2\text{Fe} + \text{O}_2 + 2\text{H}_2\text{O} \longrightarrow 2\text{Fe}(\text{OH})_2$$



Concreto ✓ lixiviação

Percolação ou movimento da água nos poros do concreto carreando substâncias solúveis, principalmente o Ca(OH)<sub>2</sub>







Cobertura do Prédio da FAU-USP



# Concreto *→ Expansão* Reação Álcali-Agregado AAR

### Manifestação:

- Fissuras mapeadas;
- Presença de gel













# Concreto ✓ intemperismo → fungos Fatores decisivos que influenciam o surgimento e a proliferação dos fungos Fator de parametros (unid. Intervalo para e rescimenta tofaladade.) Temperatura superficial da "C -8 60 fungo e da fise de fungo







# Normalização

ISO 16204:2012 Durability - Service life design of concrete structures Estabelece 4 alternativas para verificar VUP:

The avoidance-of-deterioration method. Método baseado na proteção da estrutura, impedindo o contato com o meio agressivo

# **IMPERMEABILIZAÇÃO**

qual o significado de impermeabilização ?

# existe material impermeável à água e aos gases?



parede de 0,5 mm, selado, vidro comum = 480 anos para descer 10 mm

...então todos os produtos e sistemas dito "impermeáveis" são, na verdade, permeáveis ? ...sim e muitos deles com permeabilidade inferior à de uma parede de concreto.

# comparativo com água

Pintura acrílica → 8cm 20MPa e 2cm 50MPa

Poliuretano → 25cm 20MPa e 4cm 50MPa

Epóxi → 30cm 20MPa e 5cm 50MPa

Poliuréia → 35cm 20MPa e 7cm de 50MPa

Manta PVC → 28cm 20MPa e 4cm 50MPa

Manta betume → 10cm 20MPa e 2cm 50MPa

# **ABNT NBR 12655**

| Condições de exposição                                                                                                                      | Máxima relação<br>água/cimento,<br>em massa, para<br>concreto com<br>agregado normal | Mínimo valor de f <sub>ck</sub> (para<br>concreto com agregado<br>normal ou leve)<br>MPa |
|---------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| Condições em que é necessário um concreto<br>de baixa permeabilidade à água, por exemplo,<br>em caixas d'água                               | 0,50                                                                                 | 35                                                                                       |
| Exposição a processos de congelamento e descongelamento em condições de umidade ou a agentes químicos de degelo                             | 0,45                                                                                 | 40                                                                                       |
| Exposição a cloretos provenientes de agentes químicos de degelo, sais, água salgada, água do mar, ou respingos ou borrifação desses agentes | 0,45                                                                                 | 40                                                                                       |

## **ABNT NBR 12655**

Tabela 4 – Requisitos para concreto exposto a soluções contendo sulfatos

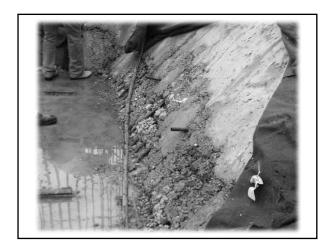
| Condições<br>de exposição<br>em função da<br>agressividade | Sulfato solúvel<br>em água (SO <sub>4</sub> )<br>presente no<br>solo<br>% em massa | Sulfato<br>solúvel (SO <sub>4</sub> )<br>presente na<br>água<br>ppm | Máxima relação água/<br>cimento, em massa,<br>para concreto com<br>agregado normal <sup>a</sup> | Mínimo f <sub>ck</sub> (para<br>concreto com<br>agregado normal<br>ou leve)<br>MPa |
|------------------------------------------------------------|------------------------------------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| Fraca                                                      | 0,00 a 0,10                                                                        | 0 a 150                                                             | Conforme Tabela 2                                                                               | Conforme Tabela 2                                                                  |
| Moderada <sup>b</sup>                                      | 0,10 a 0,20                                                                        | 150 a 1 500                                                         | 0,50                                                                                            | 35                                                                                 |
| Severac                                                    | Acima de 0,20                                                                      | Acima de<br>1 500                                                   | 0,45                                                                                            | 40                                                                                 |

- <sup>a</sup> Baixa relação água/cimento ou elevada resistência podem ser necessárias para a obtenção de baixa permeabilidade do concreto ou proteção contra a corrosão da armadura ou proteção a processos de congelamento e degelo.
- A água do mar é considerada para efeito do ataque de sulfatos como condição de agressividade moderada, embora o seu conteúdo de SO<sub>4</sub> seja acima de 1500 ppm, devido ao fato de que a etringita é solubilizada na presença de cloretos.
- Para condições severas de agressividade, devem ser obrigatoriamente usados cimentos resistentes

... então porque com concreto armado e protendido em geral nunca funciona ?

# Reservatórios de água

**Piscinas** 


**Coberturas** 

**Pontes** 

**Túneis** 







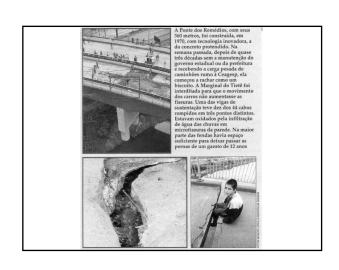


Reservatórios de água
Piscinas
Coberturas
Pontes
Túneis





# Reservatórios de água


**Piscinas** 

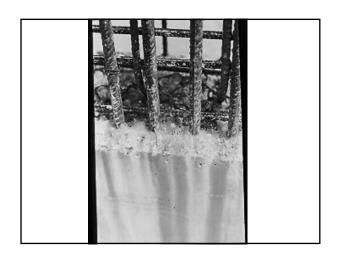
**Coberturas** 

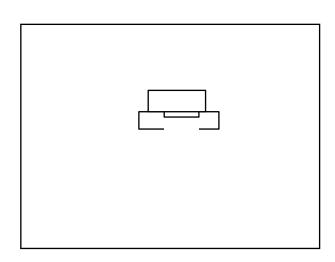
**Pontes** 

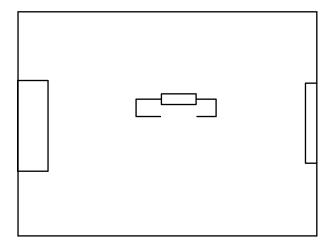
Túneis







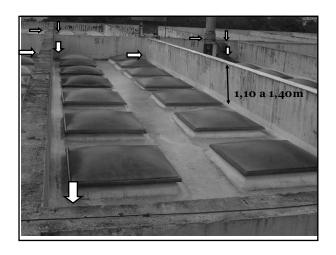





**ESTANQUEIDADE!** 





















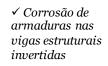
# Problemas Observados























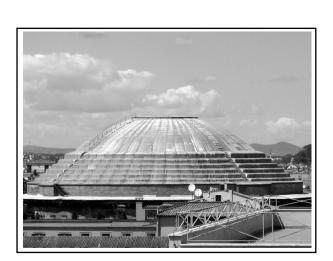







# normalização

ABNT NBR 6118:2007, item 7.2.4:


"Todos os topos de platibandas e paredes devem ser protegidos por chapins. Todos os beirais devem ter pingadeiras e os encontros a diferentes níveis devem ser protegidos por rufos"

de quem é a responsabilidade?

# Não existe material de construção mais durável que o concreto!

Somente algumas rochas têm a mesma durabilidade

Panteão de Roma





### Conceitos


- ✓ Impermeabilidade é diferente de estanqueidade
- ✓Material é diferente de estrutura

# **Conceitos**

- ✓ Não existe panacéia universal nem solução "definitiva". A solução definitiva é saber conviver com o problema.
- ✓ Deve ser implementado um programa de manutenção permanente (jardineiro)

# Solução Corretiva

- Acessos / Segurança
- Estanqueidade juntasProteção
- Reabilitar a estrutura
- Estanqueidade lajes







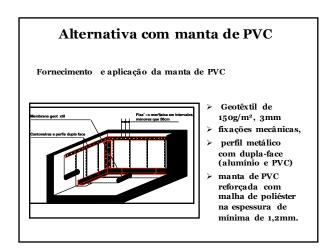
# Alternativas para obter Estanqueidade (impermeabilização)

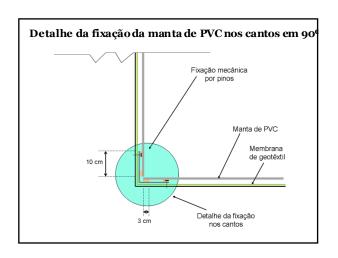
- · Silicato de sódio (incorporada)
  - Manta PVC (não aderente)
    - Poliuréia (aderente)

# Impermeabilização da laje Silicato de sódio (incorporada)



Alternativa com silicato de sódio Aplicação de acetato de cálcio diluída a 10%, 24 h antes da aplicação do silicato de sódio


Alternativa com silicato de sódio Aplicação do silicato de sódio em reparo preparado ao mesmo tempo em que é aplicado na laje de cobertura.






Impermeabilização da laje **Manta PVC** não aderente
















### Revestimento Poliuréia

sistema elastomérico de alta espessura (>1,5mm), à base de poliuréia pura isento de solventes.

sistema aderente

Alternativa com revestimento base poliurea

- > Regularização da superfície;
- > Cura úmida por aspersão de água;
- > Limpeza do substrato.

### Alternativa com revestimento base poliuréia



# Manutenção preventiva

### Manutenção preventiva

- ✓ Reparos estruturais → Realizar reparos a cada 5 anos. Admite-se que eventualmente 5% das áreas reparadas apresente algum tipo de reincidência ou que surjam novos pontos.
- ✓ Juntas de dilatação → pequenos reparos a cada 5 anos. Renovação a cada 15 anos.
- ✓ Sistema de proteção superficial da face inferior de laje → Renovação a cada 5 anos.

### Manutenção preventiva

- ✓ Sistema de impermeabilização com revestimento de poliuréia → deve ser realizada limpeza semanal e renovação a cada 15 anos.
- A água empoçada deve ser rotineiramente direcionada para os ralos, e pulverizado cal para matar insetos. (FAU.USP)
- ✓ Sistema duplo de proteção superficial da empena perimetral → deve ser realizada limpeza anual e renovação do verniz à base de resina acrílica 100% pura a cada 5 anos.

# Manutenção preventiva

Manual de Utilização, Inspeção e Manutenção com base nas prescrições das normalizações nacionais:

ABNT NBR 5674 - Manutenção de edificações — Procedimento

ABNT NBR 14037 - Manual de operação, uso e manutenção das edificações — Conteúdo e recomendações para elaboração e apresentação

### **CONCLUINDO**

projetar e construir estruturas de concreto estanques e duráveis depende:

- ✓ especificação correta (desempenho);
- ✓ projeto bem detalhado;
- ✓ preço unitário justo;
- ✓ dosagem / controle racional;
- ✓ treinamento dos operários;
- ✓ projeto de impermeabilização;
- √ fiscalização
- ✓ manutenção

### **CONCLUINDO**

- 1. Alcançar estanqueidade é o desafio.
- 2. Não existe panacéia universal.
- 3. Água é o problema a ser equacionado através de:
  - ✓ projetar bem
  - ✓ construir bem
  - ✓ impermeabilizar bem
  - ✓ fazer manutenção periódica

